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Finite amplitude axisymmetric thermoconvective flows in a bounded cylindrical 
layer of fluid heated from beneath were calculated using Galerkin's method. 
Both systems with insulated and with conducting lateral boundaries were investi- 
gated for radius-to-depth ratios of 1, 2-25, 2.55 and 2.66. Flows bounded by a 
conducting lateral boundary were found to be unstable for Rayleigh numbers 
greater than 1.1 times the critical value. The cell size was found to be an increasing 
function of the Rayleigh number. 

1. Introduction 
In  earlier papers (Charlson & Sani 1970, 1971) the onset of thermoconvectioii 

in a cylindrical fluid layer heated from beneath was studied extensively by means 
of a linearized stability analysis of the initial quiescent state of the system. Al- 
though the linearized stability analysis accurately characterizes the onset of 
convection, it cannot be presumed to provide an accurate description of finite 
amplitude motions such as those observed in the laboratory. However, the study 
of small disturbances leads to predictions of the lowest value of the Rayleigh 
number a t  which they will grow exponentially in time, and in the bounded system 
considered herein, yields the spatial form of the steady small amplitude mot,ion 
possible in the system when i t  is very close to the onset of convection. 

I n  reflecting on the physical system, one might pose the following questions. 
Will the observed flow have a similar form to the motion predicted a t  the onset, 
or will that flow itself be unstable to a new disturbance, resulting in a quite dif- 
ferent mode for the finite amplitude flow T What changes will the finite amplitude 
steady-state mode undergo as the temperature gradient across the fluid layer is 
increased beyond the critical value? How much is the rate of heat transfer en- 
hanced by convection '! Is  there more than one possible stable flow for a prescribed 
configuration of the physical system in parameter space? Answers to some of 
these questions will be sought by a detailed examination of selected axisym- 
metric flow states of a layer of fluid bounded by a rigid cylindrical enclosure. 
The interest in axisymmetric finite amplitude flows stems from the work of Kosch- 
mieder (1966, 1967, 1969), Liang, Vidal & Acrivos (1969), Hoard, Robertson & 
Acrivos (1970) and Somerscales & Dougherty (1970), who observed axisym- 
metric modes in their experiments with cylindrical fluid layers heated from below. 

In  the supercritical region the amplitude of the motions is not infinitesimal, 
14 F L M  71 



210 G .  X. Charlson and R. L. Sani 

linearization of the equations is no longer justifiable and the influence of the non- 
linear terms must be accounted for in the analysis, Physically, the primary effect 
of the nonlinear terms is a modification of the initial exponential growth rate of 
the disturbances such that in most cases steady motion of finite amplitude is 
eventually att>ained. Mathematically, the cellular motions which characterize 
finite amplitude convection are steady solutions, not uniquely determined by the 
boundary conditions, to the equations of motion. The indeterminacy is not caused 
by a lack of constraints, but rather is indicative of a ‘branching ’ of the solution as 
a function of a parameter ofthe problem. I n  the present case the parameter is the 
Rayleigh number. At Rayleigh numbers below the critical value a t  the onset of 
convection, the boundary conditions are sufficient to describe a unique steady 
solution, i.e. theno-flow solution (Sani 1964; Joseph & Shir 1966). At supercritical 
values of the Rayleigh number, two or more steady solutions are possible as well 
as the no-flow solution, which itself remains a possible solution. It has been shown 
(Sani 1967; Stakgold 1971; Joseph 1971) that t,he branch, or bifurcation, points 
of the nonlinear problem can only occur a t  points corresponding to eigenvalues 
(Rayleigh numbers) of the linear stability problem. That is, there can exist 
steady finite amplitude flows at  Rayleigh numbers arbitrarily close to the mar- 
ginal Rayleigh-number stability limits predicted by linear theory. This result has 
only been rigorously established for those cases in which the eigenvalue is of odd 
multiplicity and may, or may not, be true in ot,her cases. (Calculations by Charl- 
son & Sani (1970, 1971) suggest that  all t8he eigenvalues, i.e. Rayleigh numbers, 
predicted by linear theory are simple.) The structure of the finite amplitude flow 
is close to that of the flow associated with the appropriate solution of the linear 
stability problem in the sense that the two are identical in the limit of zero flow 
amplitude (Sani 1967; Joseph 1971). 

I n  order to distinguish the physically realizable solutions among the steady 
solutions, the &ability of the supercritical steady solutions must be investigated. 

2. Mathematical characterization 
The dimensionless nonlinear equations of motion governing perturbabions to 

the quiescent-state temperature, pressure and velocity field of a fluid in the 
Boussinesq approximation are 

P r l  (a /at+9?(u.V)u = 92Te, -Vp+V2u,  ( 1 )  

(2), (3) +92(u. V)]  T = 9 ( u .  e,) + V2T, V .  u = 0. 

Here Pr is the Prandtl number, $2 is the square root of the Rayleigh number while 
the operators V and V2 are defined as in Charlson & Sani (1970) and contain y ,  
the aspect ratio, i.e. the radius-to-depth ratio of the container. The appropriate 
boundary conditions, detailed in Charlson & Sani (1970), are those appropriate 
for either a conducting lateral wall or an insulating lateral wall and in both cases 
isothermal top and bottom surfaces. 
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3. Steady solutions 
I n  order to determine the possible steady flow states of (1)-(3), Galerkin's 

method (Finlayson 1972, p. 10) is used to  obtain approximate solutions for pre- 
scribed values of the parameters 9, Pr and y .  In  general, u and T can be repre- 
sented by 

K N M K N iM 
= C C C AijnWijn+DijnVijn, T = C C X Bijn@ijn, (41, ( 5 )  

(6) 

( 7 )  

(8) 

i=l j=1 n = l  i-1 j-1 n=l 

where Qijn(r,  $, z )  E Gn(@) Jn(aj r )  sin inz, 

Wijn(r7 $92) Gn(Q) [(yr)-' Y jn ( r )  X ; ( z )  er- ( Y - ~ Y - ' )  Y in(r )  X,(z)  ezI, 

Vijn(r, $ 5  X )  en($) [ - (yr)-' iTn(r) X ; ( z )  eg + n(yr)-2?n(r) Xi@)  e,]. 

Here the T n ( r )  are the eigenfunctions of the following eigenvalue problem: 

q n ( r )  = Y;,(t) = 0 for r = 0 , l .  (10) 

(11) 

The functions Xi@) and the a's are defined as in Charlson & Sani (1970) and 

Gn($) = (2n)-4 exp [-in$]. 

(Note that the velocity field u is solenoidal because both Viin and W i j n  are 
solenoidal vector fields.) The problem becomes that of determining the time- 
independent coefficients Aijn, Biin and Dijn. 

For the specific case of steady axisymmetric Jlou~s (n = 0 states) considered 
herein, the series representations for the velocity (with Dijo = 0 )  and tempera- 
ture are substituted into (1) and (2). Premultiplication of the linear momentum 
equation (1) by wk, and the energy expression (2) by Qkl followed by integration 
over the volume yields the following system of nonlinear algebraic equations 
to  be solved for the 2KN coefficients Aij and B, (the subscript zero has been 
dropped for convenience) : 

+ z / v @ k l V 2 q j d V = 0  ( k =  1 ,..., K ; Z =  1 ,..., N ) ,  (13) 

where i=  1 ,..., K ; j =  1 ,..., N ; m =  1 ,..., K ; p =  1 ,..., N;and 
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It is noteworthy that the pressure does not appear because the solenoidal property 
of the velocity field Wkl, coupled with the boundary conditions and Green's 
t,heorem, has been used to eliminate the gradient of the pressure field in (12). 

As shown by Liang et al. (1969) and Joseph (1971), two steady solutions to 
(1)-(3) exist for thermoconvection in a confined geometry, one corresponding to 
upflow a t  the centre of the fluid layer and the second to downflow a t  the centre 
of the fluid layer. After Liang et al., direct substitution of an upflow and down- 
flow solution into the appropriate system of differential equations for the axi- 
symmetric flows considered herein leads to  

(16) 

Here the subscripts d and u denote, respectively, the solutions with downflow 
and upflow a t  the centre. In  terms of the trial solutions (14) and (15), relations 
(16) are equivalent to obtaining the downflow solution from the corresponding 
upflow solution simply by a change of sign of all the coefficients (Aii and Bij) of 
terms which are even about z = t. It is also noteworthy that the nonlinear system 
(1)-(3) no longer separates into even and odd solutions about z = + as did the 
linearized system (see Charlson & Sani 1970); consequently the streamlines will 
no longer be symmetric. 

I n  the case of an insulat,ing lateral boundary, it is convenient to modify the 
representations (14) and (15) owing to the necessity of including the coefficients 
of the aj = 0 terms in (6) for n = 0; these are non-zero in the nonlinear problem 
and, in fact, the only terms to account for distortions in the mean temperature 
field due to the finite amplitude flow, an effect which is not included in a linear 
stability analysis. A straightforward procedure as used in the case ofa conducting 
lateral wall leads to an algebraic system which is difficult to solve. 

A more convenient formulation can be obtained by redefining the perturbation 
temperature T to have a zero mean when averaged over any cross-section z = con- 
st,ant. This property is consistent with the definition of T given in (15) with the 
aj = 0 root omitted. I n  this case the expression for the dimensionless tempera- 
ture field equivalent to 0 = - z + T ,  used in the case of a conducting lateral wall, 
is replaced by 

( 1 7 )  

{%&, z ) ,  us&, 21, m r ,  z ) }  = - { - ur,(r, 1 - 4,  %,,(T, 1 - 4 3  qh.7 1 - 2,). 

0 = - z + Tav(z) + T(r, 4, z) ,  

0 = - Z + Tav(z) + T ( r ,  4, Z) = - 2  + Tav(z), 

where Tav(z) is defined by 
- 

(18) 

Substitution of the new expansion (17)  for the temperature into ( 1 )  and (2) 
an overbar denoting an average over the cross-section. 

(neglecting the time-derivative terms) yields 

-Pr-19?(~ .V)~+WT(r ,  ~,z)e,+9Tav(z)e,+V2~-Vp = 0, (19) 

--g(u. V) T(r ,  4, z )  - 9 ( ~ .  V) Tav(z) +a(u. e,) + V'"T(r, 4, Z) + V 2Tav(z) = 0. (20) 

If (19) is averaged over a cross-section, then 
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where a prime denotes differentiation with respect to z. Making use of the solenoi- 
dal character of the velocity field, the boundary conditions and Green’s theorem 
in a plane leads to 

Integrating twice and applying Green’s theorem yields 

Ti&) = 9(u .  V T ( r ,  $, 2)). (22) 

Tav(z) = g( 1; ( U , T ( ~ ,  $, 2 )  dz - z ( U z ~ ( T 7  +, 2)) , ) (23) 

where angular brackets signify an average over the volume. Therefore (20) can 
be simplified to 

V W - ,  $4 4 +a@. e,) - - ~ ( U Z ( U , ~ ( ~ >  $, 4) 
-u,(u,T(r ,$ ,z)))  - 9 ( u . V T ( r , $ , z ) + u . V T ( r ,  4 , ~ ) )  = 0. (24) 

On substitution of (23) and the definition 

Vj3 3 VpLv+Vp = 9 ( u . V T ( r , $ , z ) ) + V p ,  

the equation (19) for the rate of change of linear momentum becomes 

- Pr-l.%’(u. V )  u +9T(r ,  4, z )  e, + V 2 u  - 09 = 0. (25) 

(Note that in general pav is not the pressure averaged over the cross-section.) 
The final versions of the equations, (24) and (25), have the same linear forms 
and properties as the linearized system of equations solved in Charlson & Sani 
(1970) since Ta&) = 0 for the linearized system. Thus the mean temperature 
field is handled ‘exactly’, that is, for given approximate fluctuating fields the 
mean temperature field is determined exactly. The resulting mean temperature 
field is more accurate than a Galerkin approximation which includes the mean 
field in the expansion representation. For the case of an insulating lateral wall 
the Galerkin equation (12) remains the same but (13) is replaced by 

@kl(uii .ez)dV+C QklV2EjdV = 0 
i, i 

(k = 1, ..., K ;  I = 1, ..., N ) .  (26) 

In  all cases a method detailed by Broyden (1965) was used to solve the resulting 
system of nonlinear algebraic equations. 

4. Characterization of steady solutions : the vitality and the Nusselt 
number 

The finite amplitude convection synthesized from the solution of the system 
of nonlinear algebraic equations for the coefficients in the representations of the 
velocit,y and temperature can be characterized by two parameters. The first,, 
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the vitality A of the physical system, measures the departure of the system from 
t,he initial quiescent state. To indicate simply its origin, consider (1) and ( 2 ) .  If 
(1) is premultiplied by the fluctuating velocity u and added to (2) premultiplied 
by the fluctuating temperature T ,  then 

Pr-h 

Integrat'ing ( 2 7 )  over the volume and rearranging the left side gives 

au aT + T at = W [ 2 ( u .  e,) T - u. (u. V )  u - T(u. V )  TI + u. V2u  + T C V .  ( 2 7 )  

y (Pr - lu .u+P)dV  = - p l . ( V U ) + + V T . V T ] d V  
2 at p- sy 

- 2 9  (u. eZ) T d V  -9 [u . (u. 8)  u + T(u. V )  TI d V .  ( 2 8 )  f V 
The right side of this expression contains only terms related to  the generation 
or dissipation of energy. The left side, resembling an expression for the time 
rate of change of kinetic energy, would vanish in the marginal stability state in 
which all perturbations are assumed to be infinitesimal in magnitude. Hence a 
stationary value of 

A -! (Pr-'u.u+T2)dV, (29) 
1- 

called the vitality, characterizes the onset of convection and for finite ainplit,ude 
flows its magnitude increases with increasing flow amplitude. (It is noteworthy 
that the parameter 8 = PrA appears as a small expansion parameter in the per- 
turbation analysis of convection in vessels of arbitrary shape by Joseph 1971.) 

A second characteristic parameter of the finite amplj tude convection is the 
Nusselt number Nu: 

 NU(,^ = 1 - [ a F / a ~ ] , ~  +&?i[U, jZo.  (30) 

I n  the case of an insulating lateral boundary, T in (30) is the total pertfurbation 
to  the linear temperature profile, i.e. T = T,,(z)+T(r,@,z).  The departure of 
the Nusselt number from unity measures the modification of the heat flux due 
to  the convective process and it is convenient to evaluate the Nusselt number a t  
the top and bot'tom plates since u,T vanishes there: 

For an insulating side wall, N z L I , , ~  is identically equal to (no lateral 
heat losses from the system allowed). However, for a conducting side wall, heat 
may be lost through the side wall by warmer fluid rising near the wall, or heat 
may be gained through the side wall if cool fluid falls near the wall. 

5. Stability of steady states 
A linear stability analysis similar to  that used in the investigation of the 

stability of the initial quiescent state in Charleson & Sani (1970,197 1) is employed 
to investigate the stability of the steady solutions of the nonlinear system of 
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governing equations (1)-(3). That is, the steady axisymmetric flow state, defined 
by the velocity and temperature pair (u, T), is subjected to a small time-depen- 
dent disturbance of the form (%(t, r ,  4, x ) ,  Y(t, r ,  4, 2 ) ) .  If, as time increases, the 
amplitude of this pair decreases to zero, the system is linearly asymptot,ically 
stable to that form of disturbance. If, on the other hand, the pair (%, Y) grows in 
time, the system is unstable. 

To implement this analysis, the dimensionless velocity, temperature and 
pressure fields are defined to be the sum of the steady-state solution and an 
infinitesimal time-dependent quantity : 

u(t, r ,  9 , x )  = UP, $4 2 )  +%V, r ,  4 , Z L  w, r ,  4, 2 )  = T(r ,  49x1 +Y(t, r ,  $, 21, 

(3% (33) 
(34) 

(35) 

(36) 

V.% = 0, (37) 

244 r ,  $,4 = p(r ,  $ 9  4 + m, r ,  $, 4. 

Pr-la%!/at +9(%. V u  + u . V%) = 9 Y e z  - V B  + V2%, 

W / a t  +8(%. V T  + u . V Y )  = 8(% . e,) + V 2 F ,  

These tdme-dependent fields, when substituted into (1)-(3), lead to 

where second-order terms in the disturbance parameters%, .F and B have been 
neglected. The disturbance parameters are also constrained to satisfy the 
appropriate boundary conditions for either an insulating or a conducting lateral 
boundary. Note that, since u and T are known quantities, the system of equations 
(35)-(37) is linear in the unknown perturbations % and 9. For the case of an 
insulating side wall in which the steady and disturbance temperature fields are 
partitioned into a horizontal mean field and a field with zero horizontal mean 

(Y = Z&, 2 )  +F(t, r ,  #, z ) ) ,  

the equation (36) for the rate of change of energy becomes 
-- 

a . ~ l a t + Z L , ( ~ , ~ + ~ Z ~ - ) - U , ( U , ~ ) - u , ( ~ , ~ ) - * . ~ ~ - ~ . v ~ + % . ~ ~  

+u.V =9(%.e,)+V2Y (38) 
and the equation of motion is identical to (35). 

The equations of the linearized stability analysis and the appropriate boundary 
conditions are non-separable, and to generate a solution recourse is made to the 
Galerkin method. The infinitesimal disturbances (a, T) to the steady-state 
functions are represented in the form 

I J ni 

where the functions Wijn, Vijn and Dijn have the forms given in (6), (7) and (8), 
respectively, and hence satisfy all boundary constraints on the velocity and 
temperature fields. 

The values of A,, and B,, corresponding to the steady state to be analysed 
are known from the nonlinear analysis and the time-dependent coefficients 
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dij,, Diln and Bijn in the perturbation velocity and temperature fields are the 
solutions of the following system of ordinary differential equations generated via 
the Galerkin procedure: 

- j v ~ r s , . ~ ~ * i j n d ~  = o (r = I ,  ..., I ,  s = I ,  ..., J ) ,  (41), (42) 1 

-Sy6rs”lV?qj,LdV = 0 (r  = 1 ,  ..., 1,s = 1, ...) J ) .  (43) 1 
Here X,, is either qsm or qsm and a tilde denotes a complex conjugate. 

Since the system of differential equations (35)-(37) is linear and invariant 
with respect to a translation of the origin in time, an exponential time dependence 
of the following form is assumed for Aijn(t) ,  Dijn(t) and Bijn(t): 

Aiin(t) = Aiinebt, Dijn(t) = Digneut, Bij,(t) = Bijneut. 

Substitution of these representations into (41)-(43) results in an algebraic 
eigenvalue problem to be solved for the eigenvalues (T. If all the eigenvslues cr 
have negative real parts, then a disturbance of the form assumed, i.e. a disturb- 
ance having an angular dependence of the form en+, for n of the selected value, 
mill decay in time and the axisymmetric steady solution is said t o  be stable to 
disturbances of that form. If one, or more, of the eigenvalues has a positive real 
part, then the disturbance will grow exponentially. I n  this case the steady solu- 
tion is unstable and therefore not likely to be observed experimentally. It should 
be emphasized that the stability analysis here is by no means complete since only 
selected disturbances (n = 0 , 1 , 2 , 3 , 4 )  have been investigated. 

6. Sample results and discussion 
Using (12) and (13) or (26) the velocity and temperature coefficients for selected 

values of y, 9 2 2  and Pr were calculated with K = 4 and N = 5 ( N  = 4 for case of 
y = 1-0 with a conducting lateral wall) in (14) and (15), i.e. for five (four for 
y = 1.0 with a conducting lateral wall) radial trial functions and four vertical 
trial functions. This choice of trial solution for y = 2-66 leads to  a critical Rayleigh 
number of 1805.92 compared with the value 1803.32 obtained in Charlson & 
Sani (1  970) with K = 10 and N = 5, or an error in the critical Rayleigh number of 
less than 1 %. The structure of the linearized velocity field is also duplicated with 
an error of less than 1 yo between the two representations. While no error bounds 
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Solu- Direc- 
tion Radial tion of 

9 2  Pr branch rolls flowst A $  Nulo Null Stability$ 

2548.7 - 1 1 - 0.0 First linear solution - 
0.0 Second linear - 7361.2 - 

2600 1.0 1 1 D 2.144 1.043 0.976 S 
3000 1.0 1 1 D 6.463 1.192 0.973 S 
6000 1.0 1 1 D 18.899 1.785 1.167 S 
7500 1.0 1 1 D 22.534 1.918 1.256 S, U ( n  = 2) 
2600 0.2 1 1 D 4.042 1.021 0.985 S , U ( n  = 2) 
2600 0.025 1 1 D 4.571 1.003 0.997 S 
3000 0,025 1 1 D 16.768 1.013 0.990 S 
6000 0.025 1 1 D 97-537 1.117 0.958 S, U ( n  = 2) 
7500 0.025 1 1 D 144.409 1.199 0.948 S , U ( n  = 2) 
2600 10.0 1 1 D 0.0387 1.049 0.975 S 
2600 60.0 1 1 D 0.0381 1.050 0.974 S 
2800 60.0 1 1 D 0.0815 1.146 0.969 S 
3000 60.0 1 1 D 0.106 1.224 0.979 S 
4500 60.0 1 1 D 0.185 1.657 1-104 S 
7410 1.0 2 27  D 1.901 1.028 0-982 U 
7510 1.0 2 27  D 3.328 1.055 0475 U 

2 111 - 
solution 

t D,  downflow at centre of fluid layer. 

5 S, stable to infinitesimal disturbances; U ,  unstable (the value of the wavenumber n is 

1 1  Two rolls in vertical, one in radial direction. 
71 Transition between number of rolls given and one less. 

For Pr < 1, A is P d  times A defined by (29). 

included for non-axisymmetric cases). 

TABLE 1. Nonlinear results for conducting lateral wall; aspect ratio y = 1.0 

Solu- Direc- 
tion Radial tion of 

9 2  Pr branch rolls flow? A $  N u / ,  Null Stability$ 

1810.3 - 1 2 - 0.0 First linear solution - 
2137.1 - 3 3 - 0.0 Second linear solu- - 

tion - 
2864.6 - 3 2 - 0.0 Third linear solution - 
1840 1.0 3 2 U 1.462 1.009 1.000 - 
1900 1.0 1 2 U 2.666 1.025 1.008 - 
2200 1 .o 1 2 V 6.732 1.124 1.064 - 

2400 1.0 1 2 U 8.946 1.203 1.109 - 

2600 1.0 1 2 U 10.922 1.285 1.154 - 

1900 0.025 1 2 U 7.293 1.001 0.999 - 

2000 0.025 1 2 U 13.559 1.004 0.998 - 

2100 0.025 1 2 U 17.590 
1840 60.0 1 2 U 0.0296 1.010 1.001 - 

2000 60.0 1 2 U 0.0797 1.059 1.027 S. U 

2 150 1-0 2 3 U - 0.997 1.014 U 
2250 1 -0 2 3 U 4.486 1.019 1.070 - 

2400 1-0 2 3 U 6.862 1.060 1.142 - 

2900 1.0 3 3 1  u 1.261 1.003 1.002 

2900 1.0 1 2 U 13.520 1.403 1.220 S 

9 - - 

o~ = 3,411) 

2880 1.0 3 37 u 0.596 1.001 1.001 U 
- 

t D,  downflow at centre of fluid layer; U ,  upflow at centre of fluid layer. 
$ For Pr < 1, A is Pr4 times A defined by (29). 

S, stable to infinitesimal disturbances; U ,  unstable (the value of the wavenumber n is 
included for non-axisymmetric cases). 

/ I  Fastest growing. 
7 Transition between number of rolls given and one less. 

TABLE 2. Nonlinear results for conducting lateral wall; aspect ratio y = 2-55 
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Solu- Direc- 
tion Radial ti& of 

d 2  

1805.9 
2088.7 

2748.4 
1840 
1880 
2100 
2200 
2200 
2300 
2350 
2400 
2400 
2500 
2550 
2600 
2600 
2800 
1880 
2000 
2200 
2300 
2350 
2400 
2450 
2500 
1840 
1880 
19.50 
2000 
2050 
2075 

Pr 
- 
- 

- 
1.0 
1.0 
1 .o 
1 .0 
1.0 
1 .o 
1.0 
1.0 
1 .o 
1.0 
1.0 
1 .o 
1.0 
1.0 

60.0 
60.0 
60.0 
60 
60 
60 
60 
60 
0.025 
0.025 
0.025 
0.025 
0.025 
0.025 

2088.73 0425 
2100 0.025 

branch 

1 
2 

3 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

rolls 

3 
3 

4 
3 
3 
3 
3 
3 
3 
3 
37  
37 
37 
2 
2 
2 
3 
3 
3 
3 
37 
37 
37 
37 
37 

37l 
37  

37  
37  
37 

3 

2 
2 

flows t 
- 
- 

- 
U 
l J  
U 
U 
D 
D 
D 
U 
D 
U 
U 
U 
D 
U 
CJ 
U 
U 
U 
U 
U 
U 
U 
U 
U 
U 
U 
U 
U 
U 
U 

A $  Nu[, Null Stability8 
0.0 First linear solution - 
0.0 Second linear solu- - 

0.0 Third linear solution - 
tion 

1.537 1.009 
2.344 1.018 
5.473 1.079 
6.663 1.112 
6.663 1.073 
7.770 1.096 
8.301 1,107 
8.822 1.184 
8.822 1.118 
9.844 1.224 

10.348 1.244 
10.844 1.266 
10.844 1.161 
12.727 1.351 
0.047 1.020 
0-080 1.054 
0.119 1.121 
0.136 1.158 
0.143 1-177 
0.150 1.197 
0.157 1.218 
0.164 1.234 
3.693 1.000 
6.220 1.001 

10.768 1.002 
13.548 1.003 
15.608 1.004 
15.608 1.005 

15.205 1.004 
75.196 - 

1.002 
1.008 
1.050 
1.073 
1.112 
1.147 
1.165 
1.118 
1.184 
1.140 
1-150 
1.161 
1.266 
1.204 
1.009 
1.032 
1.078 
1.101 
1.113 
1.124 
1.136 
1.147 
1.000 
0.999 
0.999 
0.998 
0.997 
0.997 

0.997 
- 

- 
S, U ( n  = 4)11 
S, U(n = 3,411) 

S, U ( ~ L  = 3,411) 
S ,  U ( n  = 3,411) 
S 
S 
S, U ( n  = 3.411) 

- 

- 
- 

S, U(n = 4) 
- 

S 
S, U ( n  = 3.411) 
8, u(n = 3,411) 
S, U ( I L  = 3,411) 

S 
S, U ( n  = 3,411) 

s' 
S 
S 
S 
S, U(n = 2) 

S 
U ,  U ( n  = 2) 
U 

- 

- 

- 

t D, downflow at centre of fluid layer; U ,  upflow a t  centre of fluid layer. 
1 For Pr < 1 ,  A is Prk times A defined by (29). 

S ,  stable to infinitesimal disturbances; U ,  unstable (the value of the wavenumber n is 
included for non-axisymmetric cases). 

I /  Fastest growing. 
V Transition between number of rolls given and one less. 

TABLE 3. Nonlinear results for conducting lateral wall; aspect ratio y = 2.66 

were obtained for the supercritical flows investigated, comparison with previous 
linear results (Charlson nt Sani 1970) as well as with qualitative features of 
certain numerical simulations (Gershuni, Zhukovitskii & Tarunin 1966; Tarunin 
1967; Liang et al. 1969) gives confidence in the results in the neighbourhood of 
the branch points and guarded confidence further along the supercritical branch. 
Steady axisymmetric solutions were obtained for aspect ratios of 1-0, 2-55 and 
2.66 and Prandtl numbers of 0.025, 1.0 and 60.0 for a conducting boundary. 
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22 
2090 
2090 
2095 
2098 
2100 
2105 
21 10 
2125 
2175 
2250 
2500 
2100 
2105 
2750 
2760 
2800 

Solu- Direc- 
tion Radial tion of 

PT branch rolls flow? A NU10 Null 
1.0 1 3 U 0.481 0.998 1.003 
1.0 2 3 D 0.481 1.003 0.998 
1.0 2 3 U - 0.997 1.009 
1.0 2 3 CJ - 0.997 1.01 1 
1.0 2 3 U 1.447 0.997 1.013 
1.0 2 3 U - 0.997 1.017 
1.0 2 3 U - 0.997 1.02 1 
1.0 2 3 U 2.601 1.000 1.031 
1 .o 2 3 U 4.021 1.011 1.060 
1.0 2 3 U 5.512 1.032 1.100 
1.0 2 3 U 8.857 1.100 1.219 

60.0 2 3 U - 0.9947 1.019 
60.0 2 3 U - 0.9966 1.017 

1.0 3 4 U 0.334 1.001 0.999 
1.0 3 4 U 0.861 1.004 0.999 
1.0 3 4 U 1.752 1.011 1.001 

t D, downflow a t  centre of fluid layer; U ,  upflow at centre of fluid layer. 
$ U ,  unstable to axisymmetric disturbances. 

Sta- 
bility$ 

U 
U 

- 
U 

- 
U 

U 
- 

TABLE 4. Nonlinear results for conducting lateral wall; aspect ratio y = 2.66 

For the case of an insulating boundary, results were obtained for aspect ratios 
of 1.0 and 2.25 and Prandtl numbers of 0.025 and 1.0. Certain features of the re- 
sulting flows are given in tables 1-4. The stability of selected steady solutions 
to infinitesimal axisymmetric and non-axisymmetric disturbances of azimuthal 
wavenumbers n = 1 ,2 ,3  and 4 was investigated. 

The streamlines and isotherms corresponding to the finite amplitude solution 
for a layer of fluid with Pr = 1 are displayed in figures 1 and 2 for an aspect ratio 
of unity and Rayleigh numbers of 2600 and 6000. (The abscissa (ordinate) of all 
figures displaying streamlines or isotherms covers the range 0 < r d 1 (0 6 z < 1) 
in equal increments.) The convection manifests itself as a single radial roll com- 
pletely filling the cylinder. From figure 1 it is evident that the structure of the 
flow near the critical state (the approximate critical Rayleigh number is 2549) is 
modified only slightly by increasing the Rayleigh number to 6000. The corre- 
sponding modification to the mean temperature field is similar to Goldstein’s 
(1964) observations and indicates that the motion transfers heat in such a man- 
ner that  the average temperature gradient in the central region of the fluid layer 
is decreased. The latter decreases the gravitational potential energy available 
for conversion into kinetic energy of a new flow, which stabilizes the ba,sic flow 
to other disturbances. Such an effect stabilizes the flow consisting of one radial 
roll to axisymmetric and selected non-axisymmetric disturbances a t  all 
Rayleigh numbers investigated except 6000, a t  which it becomes unstable to 
a disturbance of azimuthaI wavenumber n = 2. The second steady solution, 
corresponding to  points along a branch bifurcating from the second eigenvalue 
of the linear problem, is possible for Rayleigh numbers greater than 7361. 
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t 

Y 

1hc;rRE 1.  Streamlines for downflow solution with a conducting lateral mall; 
y = 1.0, Pr = 1.0. ( a )  B2 = 2600. ( b )  9P = 6000. 

(4 ( b )  

FIGURE 2.  Isotherms for downflow solution with a conducting lateral wall; 
y = 1.0; Pr = 1.0. ( a )  W2 = 2600. ( b )  9P = 6000. 

However, this second energy state, which corresponds to two radial rolls stacked 
in the vertical, is not stable even to axisymmetric disturbances. 

The Prandtl number has little effect on the flow structure predicted at  an 
aspect ratio of one, but its effect is evident in the characteristic parameters, the 
vitality and the Nusselt number, which are displayed in figures 3 and 4, respec- 
tively, for the first energy state and Prandtl numbers of 0.025, 1.0 and 6.0. At 
Pr = 0.025, which is approximately the value for mercury, which has a kinematic 



Thermoconvective flows in a cylindrical f luid layer 321 

0.25 

0.20 

(A1 o"s 
0.10 

0.0s 

0 0  

IAl 

IA I 

SO 60 70 
w 

10 Ti3 0 S 50 60 70 

9 

40 

20 

SO 60 70 
w 

FIGURE 3 

NU 

2.0 I I I 1 

1.8 / - 
/' 

- 

I I I I 
1.0 1.4 1.8 2.2 2.6 

g 2 / % r i t  

FIGURE 4 

FIGURE 3. Branch diagram for a conducting lateral wall; y = 1.0. ( a )  Pr = 60. ( b )  Pr = 1. 
( c )  Pr = 0.025. 

FIGURE 4. Nusselt number a t  z = 0 for downflow solution with a conducting lateral wall; 
y = 1.0. ---, Pr = 60; ---, Pr = 1; - , Pr = 0.025. 

viscosity about a factor of ten smaller than water but has a thermal conductivity 
nearly twenty times larger, the vitality is significantly larger than it is for Prandtl 
numbers of 1 or 60. This effect suggests that the fluid velocities resulting from the 
small viscous effects are quite pronounced. 

The Nusselt number results for Pr = 0.025, as indicated in figure 4, are signifi- 
cantly less than those for the higher Prandtl numbers. The initial rate of increase 
in heat flux by convection (the dimensionless heat flux being the product of the 
Nusselt number and Rayleigh number) is only 1.09 for Pr = 0.025 compared with 
2.28 for Pr = 1.0 and 2.48 for Pr = 60. These results are qualitatively similar t o  
the experimental results of Rossby (1969) for thin fluid layers. He measured 
initial rates of increase in the heat flux of 1.28 for mercury (Pr = 0-025), 2.45 for 
water (Pr = 6.8) and 2.50 for a silicone oil (Pr = 200). Results for various aspect 
ratios are tabulated in table 5. The low Nusselt number, indicating a small in- 
crease in heat transfer due to convection, and the large vitality, suggesting rela- 
tively high convective velocities for low Prandtl number fluids, suggest that the 
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Aspect 
ratio 

1.00 
1.00 
1.00 
2.55 
2.55 
2.55 
2.66 
2.66 
2.66 
1.00 
2.25 
2.25 

r 
r 
1 

Lateral 
boundary 

Conducting 
Conducting 
Conducting 
Conducting 
Conducting 
Conducting 
Conducting 
Conducting 
Conducting 
Insulating 
Insulating 
Insulating 
Insulating 
Insulating 
Insulating 

Flow 
direction 

Down 
Down 
Down 
UP 
UP 
UP 
IJP 
UP 
UP 
- 

Pr 

0.025 
1.00 

0.025 
1.00 

0.025 
1 .oo 

1.00 
1.00 
0.025 
0.025 
6.8 

60.0 

60.0 

60.0 

200 

Initial 
slopet 

1.09 

2.49 
1.04 
1.53 
1.62 
1.03 
1.46 
1 .51  
1.26 
1.37 
1.01 
1.28 
2.45 
2.50 

2.28 

t In conducting cases, initial slope is evaluated a t  bottom surface. 
$ Experimental results of Rossby in fluid layers of depths less than 1 cm and diameters 

of 82 in. 
TABLE 5. Initial rate of increase in heat flux by convection. 

thermal conductivity, not viscous effects, is the controlling quantity in determin- 
ing the effect of convection on the heat transfer in low Prandtl number fluids. 

For the case of an insulating lateral wall and an aspect ratio of 2.25, the first 
three axisymmetric states according to linear theory occur a t  g2 = 1794.9 (a dy- 
namic state of two radial rolls), 9 2  = 2325.6 (three radial rolls) and g2 = 2735.0 
(one radial roll). The finite amplitude solution a t  a slightly supercritical Rayleigh 
number consists of two radial rolls as the second and third energy states are 
unstable to axisymmetric disturbances in this range of Rayleigh numbers. 
(These and additional results for an insulated lateral wall are tabulated in tables 
6 and 7 . )  B s  the Rayleigh number is increased the outer roll increases slightly in 
size and the velocities within it increase more rapidly, but the gross character 
of the flow changes only slightly The Nusselt number for the system, reflecting 
the increase in heat transfer as a result of convection, is predicted to be a convex 
function of the Rayleigh number and the rate of heat transfer has increased by 
about 14 % owing to an increase in the Rayleigh number to 1.5 times the critical 
value. It is not surprising that the increase in the rate of heat transfer due to 
convection is smaller than that given by Silveston (1963), since his experiments 
were conducted in thin fluid layers in which the effects of the lateral walls were 
negligible. At an aspect ratio o f  2.25, rigid walls exert a stronger stabilizing in- 
fluence, which is reflected in the large critical Rayleigh number, and hence 
convection is not as highly developed. As before, the effect of a Prandtl number of 
0.025 is seen primarily in the vitality and Nusselt number. 

A most interesting case is that  of a cylindrical fluid layer of aspect ratio 2.66 
bounded by perfectly conducting walls. A linear stability analysis leads to a 
critical Rayleigh number of 1805.9 for the order of approximation considered 
here and to an instability in the form of three radial rolls, the outermost being 
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3 2  

2264.0 
6656.9 
2300 
2400 
2600 
3000 
4000 
6000 
7000 
2300 
2300 
2500 

Solution Radial 
Pr branch rolls L4 t Nu Stability$ 

- 1 1 0.0 First linear solution 
- 0.0 Second linear solution 2 10 

1.0 1 1 1.913 1.004 5 
1 .o 1 1 3.863 1.015 5 
1.0 1 1 6.517 1.037 5 
1.0 1 1 - 1.076 5 
1 .o 1 1 20.245 1.156 5 
1.0 1 1 37.356 1.261 8 
1.0 1 1 45.274 1.297 5 

60 1 1 0.064 1.014 5 
0.025 1 1 - 1.000 5 
0.025 1 1 - 1.000 5 

t For Pr < 1, A is Prt times A defined by (29). 
$ S, stable to infinitesimal axisymmetric disturbances. 
0 Two rolls in vertical, one in radial direction. 

TABLE 6. Nonlinear results for insulating lateral wall: aspect ratio y = 1.0. 
(Flow direction not indicated since upflow and downflow solution have same properties.) 

Solution Radial 
Jp Pr branch rolls A t  Nu Stability$ 

1794.9 - 1 2 0.0 First linear solution 
2325.6 - 2 3 0.0 Second linear solution 
2735.0 - 3 1 0.0 Third linear solution 
1850 1 .o 1 2 1.338 1.011 - 
2000 1.0 1 2 2.578 1.038 - 
2200 1.0 1 2 3.613 1.072 - 

2400 1.0 1 2 4.398 1.102 - 

2600 1 .o 1 2 5.050 1.130 5 
2800 1.0 1 2 2.944 1.155 5 
1825 0.025 1 2 - 1.000 - 
1850 0.025 1 2 1.000 - 
1900 0.025 1 2 - 1.000 - 
2000 0.025 1 2 - 1 .oo 1 5 
2100 0.025 1 2 - 1.001 - 
2200 0.025 1 2 - 1.001 - 
2400 0.025 1 2 - 1.002 5 
2350 1.0 2 3 - 1.004 U 
2400 1.0 2 3 - 1.013 - 
2750 1.0 3 1 - 1.002 U 

t For Pr < 1, A is Pr* times A defined by (29). 
$ S, stable to infinitesimal axisymmetric disturbances; U ,  unstable. 

TABLE 7. Nonlinear results for insulating lateral wall; aspect ratio y = 2.25. 
(Flow direction not indicated since upflow and downflow solution have same properties.) 

- 

small. (The second and third axisymmetric states obtained from a linear analysis, 
g2 = 2088.7 and 2748.4, correspond, respectively, t o  spatial patterns with three 
radial rolls with an inner roll slightly smaller than the other two and a transitional 
pattern which approaches four radial rolls.) The branching curve for Pr = 1 
for upflow at the centre for this case is displayed in figure 5. The broken lines for 
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9 

FIGURE 5. Branch diagram for a conducting laterd wall; y = 2.66, Pr = 1.00. 

the second and third branches indicate that solutions on these branches are 
unstable. (It should be pointed out that  a number of non-axisymmetric solution 
branches are predicted to  occur in the 9 range of figure 5 and thus are not dis- 
played, nor was their stability determined.) 

The solutions along the first branch are characterized in figures 6-8, where the 
streamlines and isotherms corresponding to successively larger supercritical 
Rayleigh numbers for a Prandtl number of 1.0 are displayed. I n  figure 6, at  a 
Rayleigh number of 1880, the three-roll structure is similar to  that of the linear 
state. As the Rayleigh number increases the inner two rolls grow until a t  a 
Rayleigh number of 2400 (figure 7) the outer roll has been pinched off a t  the 
centre, forming two small rolls in each corner. (Somewhat similar corner vort,ices 
have also been predicted by Tarunin 1967.) The inner rolls continue to grow 
until a t  W2 = 2600 (figure 8) these two rolls completely fill the container. This 
process of the annihilation of a roll is similar to that associated with the transition 
in rolls with decreasing aspect ratio in the linear stability theory of the quiescent 
state (Charlson 8: Sani 1970). Such a continuous transition is in agreement with 
some recent heat-transfer studies of Koschmieder (1974)) in which no distinct 
change in slope was observed in the Nusselt number correlation as the number of 
rolls decreased in a thin fluid layer. Moreover, as in Koschmieder's observatioiis 
the effective wavenumber decreases as the Rayleigh number is increased but 
the cell is annihilated at the outer edge of the container and not at the centre as 
he observed a t  much larger aspect ratios. The decrease in the number of rolls, 
i.e. the decrease in the effective wavenumber, with increasing supercritical 
Rayleigh number is typical of all the cases investigated in this study. This wave- 
number variation is in agreement with the theoretical results of Davis ( 1  968) 
and experimental observations for systems with large aspect ratios (Kosch- 
meider 1966; Rossby 1969; Krishnamurti 1970; Willis, Deardorff & Somerville 
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(4 ( b )  

FIGURE 6. (a) Streamlines and (b) isotherms for upflom solution with a 
conducting lateral wall; y = 2-66, Pr = 1-0, w2 = 1880. 

FIGURE 7. (a) Streamlines and ( 6 )  isotherms for upflow solution with a 
conducting lateral wall; y = 2-66, Pr = 1.0, w2 = 2400. 

1972) but is in disagreement with the theoretical results of Schluter, Lortz & 
Busse (1965) for systems of infinite lateral extent. 

As a check on the calculations the streamlines and isotherms of a solution with 
downflow a t  the centre were computed for B2 = 2600 and Pr = 1. The upflow 
solution was calculated in the normal manner and then property (16) was used 
to generate initial guesses for the coefficients in the velocity and temperature 
expressions. The solution converged after one iteration with no change in the 

I5 F L M  71 
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(a1 16) 

FIOCTRE 8. ( a )  Strcarnlines and ( b )  isotherms for upflow solution with a conducting 
lateral wall; y = 2.66, Pr = 1.0, %? = 2600. 

first, six significant figures of the coefficients and hence provided a check on the 
algebraic equations and solution algorithms. The stability and vitality of the 
upflow and downflow solutions have identical values; however, the magnitudes 
of the Nusselt numbers as defined by (29) a t  the bottom and top are reversed. 
This result follows since in the case of a conducting lateral wall the only constraint 
on the temperature there is that the perturbations vanish. The temperature 
gradient is not presumed to  vanish and indeed heat transfer out through the sides 
would be expected if the bulk of the fluid near the wall is hotter than the corre- 
sponding linear-profile value imposed at  the wall. This is the case when the fluid 
in the outer roll is flowing up along the wall and hence hotter fluid heated by the 
lower surface is rising near a cooler wall. In  this case, the heat flowing in through 
t8he bottom must equal the heat losses through the top and the side. Thereverse is 
true when cooler fluid is falling near the wall. The effect results in Nusselt num- 
bers with different magnitudes at  the top and bottom. In figure 9, the Nusselt 
numbers a t  the top and bottom are presented as functions of the Rayleigh number 
for conducting lateral walls, Pr = 1, y = 2.66 and fluid flowing up at  the centre 
of the layer. Since the third roll is very small, its effect on the heat transferred 
out through the lateral wall is small. Therefore, although cooler fluid is circulating 
within i t  near the wall, its effect on the Nusselt numbers a t  the top and base is only 
to depress the magnitudes slightly. The presence of the large second roll having 
upflow near the wall results in heat losses through the side and therefore the 
Nusselt number a t  the base is elevated above that a t  the top. Above a Rayleigh 
number of 2400 (9Z2/9& = 1.33 in figure 9), the Nusselt number a t  the top 
is a slightly convex function of the Rayleigh number. The Nusselt number at  
the bottom is a nearly linear function of the Rayleigh number a t  the larger 
Rayleigh numbers considered. This increasing difference between the Nusselt 
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FIGURE 9. Nusselt number for upflow solution with a conducting lateral wall; 
y = 2.66, Pr = 1.0. 

numbers a t  the top and bottom suggests that a greater portion of the heat onter- 
ing through the bottom surface is being rapidly conducted out through the side 
wall. It should be emphasized that the present treatment of the case of conducting 
lateral walls is mathematically convenient, but a more realistic analysis must 
include the solid walls and their coupling to  the fluid system. 

Increasing the Prandtl number from 1 to 60 a t  fixed 9 2  = 2400 causes a 
decrease in the amplitude of the convection which is reflected in a decrease in the 
vitality from 15.68 to 0.154. However, the appearance of ‘corner rolls’ has been 
advanced, occurring first a t  a Rayleigh number of 2300, although as in the case 
of a Prandtl number of unity, two rolls completely filling the container are not 
evident until W 2  > 2500. At a Prandtl number of 0-025, the transition between 
three and two radials rolls occure at only slightly supercritical Rayleigh numbers. 
(A similar dependence of the wavenumber on the Prandtl number has been ob- 
served by Krishnamurti (1970) in a system with large aspect ratio.) A most 
intriguing result a t  this aspect ratio is the occurrence of an oscillatory instability 
when the steady flow is subjected to only axisymmetric disturbances. At a 
Rayleigh number of 2088.7, the two-roll solution has transformed back to a two- 
roll solution with corner rolls which is now unstable to  axisymmetric disturbances 
having a dimensionless complex exponent c with an imaginary part of magni- 
tude 3.21 (time €or low Prandtl number analysis being in units of v0/L2). This 
result indicates that the fluid layer has become unstable to  an oscillatory flow 
having a fairly long period. 

The flow a t  the transition point at which the non-oscillatory motion first 
becomes unstable (real part of v zero) is a linear combination of the basic non- 

15-2 
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oscillatory motion and an oscillatory pattern of small amplitude and long period. 
This behaviour is suggested by the analysis of Busse (1972) for a stress-free 
geometry and by the experiments of Verhoeven (1969) with mercury in thin 
tubes, in which oscillatory modes were observed a t  Rayleigh numbers 10 yo above 
the crit,ical value, in his case approximately 1.2 x lo7, and the experiments of 
lClitchel1 & Quinn (1966) with gases in cylindrical systems with aspect ratios 
near unity. However, a more detailed investigation which subjected the basic 
axisymmetric flow also to non-axisymmetric disturbances indicated that the 
flow is unstable t o  n = 2 type disturbances a t  a Rayleigh number of approxi- 
mately 2000. Consequently, the axisymmetric oscillatory secondary flow is 
probably not attainable, and instead the system displaysa three-dimensional flow. 

Owing to computational limitations, primarily monetary, the stability analysis 
of the axisymmetric flow states including non-axisymmetric disturbances was 
limited in scope. Only anumber of cases sufficient to obtain an indication of trends 
were investigated; moreover, only a selected number of non-axisymmetric dis- 
turbances (n = 1, 2, 3, 4) were included. The obvious trend in the case of unity 
aspect ratio, i.e. y = 1, was that wall effects greatly enhance the stability of axi- 
symmetric flow states. The latter persisted as stable steady states to Rayleigh 
numbers nearly 2.4 times critical, a value, of course, a t  which the quality of the 
approximation of the axisymmetric flow state is questionable. I n  contrast, for 
larger aspect ratios of 2-55 and 2-66 (also a few a t  y = 3.00) the general trend was 
that axisymmetric flow states were only stable up to 1*04-1,1 times the critical 
Rayleigh number. That is, axisymmetric states are not very stable. These results 
were initially suspect in view of Koschmieder’s (1974) observations; however, 
all checks on the numerical algorithm as well as increases in the number of trial 
functions when possible indicated validity of the results. It is expected, although 
not est,ablished rigorously, that the approximate solutions of both the basic 
flow and disturbance equations should be reasonably sharp a t  such low super- 
critical Rayleigh numbers. Consequently, the present results do not confirm the 
dominance of the wall geometry in determining supercritical cellular structure 
as apparently observed by Koschmieder (1974) up to  Rayleigh numbers many 
t,imes the critical value. I n  fact, the present analysis implies the occurrence of a 
three-dimensional flow a t  slightly supercritical Rayleigh numbers. However, the 
stability of only a limited number of supercritical cases with an insulated lateral 
boundary, a better approximation to  most configurations for which observations 
have been reported, was investigated; moreover, only the stability to axisym- 
metric disturbances was investigated. (See tables 6 and 7.) It appears to the 
authors that the disparity between the present results and experimental observa- 
tions is not due primarily to  the difference in aspect ratios but rather to differences 
in thermal conditions a t  the lateral wall, and currently a more detailed stability 
analysis of supercritical cases with an insulated lateral boundary is being carried 
out.? An additional general trend which was inferred from the cases examined 

t A preliminary analysis of a cylindrical layer with free conducting top and bottom 
surfaces and a rigid conducting lateral boundary, a simpler case since the mathematical 
system is separable, suggests that even at large aspect ratios supercritical axisymmetric 
flow states are only stable t.0 Rayleigh numbers less than 1.2-1.3 times the crit,ical value. 
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was that a t  small values of the Prandtl number a disturbance with azimuthal 
wavenumber n = 2 is the most dangerous whereas a t  large values of the Prandtl 
number a disturbance with azimuthal wavenumber n = 4 is the most dangerous. 
I n  this respect it is noteworthy that Mitchell 8: Quinn (1966) did observe steady 
flows with similar azimuthal structure (n  = 2) in cylindrical gas layers with aspect 
ratios near unity while operating a t  Rayleigh numbers approximately fifteen 
times the critical value. 
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